11 REFERÊNCIAS BIBLIOGRAFICAS

ABDUL, M., AL-SOFI, K. Seawater desalination- SWCC experience and vision Desalination, 135, 121-139, (2001).

ADAMSON, A.W.;GAST, A.P. **Physical chemistry of surfaces**, 6th ed., John Wiley & Sons, USA,1997.

AFONSO, M.D.; PINHO, M.N.de **Transport of MgSO₄**, **MgCl₂ and Na₂SO₄ across an amphoteric nanofiltration membrane** Journal of Membrane Science, 179, 137-154, (2000).

AL-SHAMMIRI, M.; AHMED, M.; AL-RAGEEB, M. Nanofiltration and calcium sulfate limitation for top brine temperature in Gulf desalination plant Desalination, 167, 335-346, (2004).

ANNE, C.O. et al. Nanofiltration of seawater: fractionation of mono and multi-valent cations Desalination, 140, 67-77, (2001).

BANNOUD, A.H. Elimination de la dureté et dês sulfates contenus dans les eaux par nanofiltration Desalination, 137, 133-139, (2001).

BERTRAND, S.; LEMAÎTRE, I.; WITTMANN, E. **Performance of** nanofiltration plant on hard and highly sulphated water during two years of operation Desalination, 113, 277-281, (1997).

BOWEN, W.R.; DONEVA, T.A.; YIN, H.B. Atomic Force Microscopy studies of membrane-solute interactions (fouling)" Desalination, 146, 97-102, (2002).

BOWIE, A.R. et al. Shipboard analytical intercomparison of dissolved iron in surface waters along a north-south transect of the Atlantic Ocean Marine Chemistry, 84, 19-34, (2003).

BROWN, G.H.; DOANE, J.W.; NEFF, V.D. **A review of structure** and physical properties of liquid crystals, CRC Press, Cleveland, 1971. BROWN, J et al. **Ocean Chemistry and Deep Sea Sediments**, Pergamon, 1989.

BUTLER, J.N. *Ionic Equilibrium:* Solubility and pH calculations, John Wiley & Sons, 1998.

BUTT, F.H.; RAHMAN, F.; BADURUTHAMAL, U. Hollow fine fiber vs spiral-wound reverse osmosis desalination membranes Part 2: Membrane autopsy- Desalination, 109, -83-94, (1997).

CARIÉ, M.D et al. *Fouling of inorganic membranes by adsorption of whey protein* Journal of Membrane Science, 165, 83-88, (2000).

CHEREMISINOFF, N.P. *Liquid Filtration*, 2nd edition, Butterworth-Heineman, USA, (1998).

CHERYAN, M. *Ultrafiltration and Microfiltration*, Technomic Publishing Co. Inc., **(1998)**.

CORRÊA, O.L.S. *Petróleo:* noções sobre exploração, perfuração, produção e microbiologia, editora Interciência, Rio de janeiro, **(2003)**.

CREMASCO, M.A. Fundamentos de transferência de massa, 2ªed., editora UNICAMP, **(2002)**.

DALVI, A.G.I.; AL-RASHEED, R.; JAVEED, M.A. Studies on organic foulants in seawater feed of reverse osmosis plants of SWCC Desalination, 132, 217-232, (2000).

DARBY, A et al **Sulfate removal from water** Water Qual.Res.Journal, Canada, 38, 169-182, **(2003)**.

DARTON, E.G.; BUCKLEY, E. *Thirteen years' experiences treating a seawater RO plant* Desalination, 134, 55-62, (2001).

DAVIS, R.H. Modeling of fouling of crossflow microfiltration membranes Separation and Purification Methods, 21(2), 75-126, (1992).

DESLOUIS, C. et al. Characterization of calcareous deposit in artificial sea water by impedances techniques: 2-deposit of $Mg(OH)_2$ without CA CO₃ Eletrochimica Acta ,45, 1837-1845, (2000).

DRIOLI, E. et al. Integrated system for recovery of CaCO₃, NaCl and MgSO₄.7H₂O from nanofiltration retentate Journal of Membrane Science, 239, 27–38, (2004).

_____. Integrated membrane operations in desalination processes Desalination, 122, 141-145, (1999).

DUYVESTEIJN, C.P.T.M. Water re-use in an oil refinery Desalination, 119, 357-358, (1998).

DYDO, P.; TUREK, M.; CIBA, J. Laboratory RO and NF processes fouling investigation by residence time distribution curves examination Desalination ,164, 33-40,(2004).

_____. Scaling analysis of nanofiltration systems fed with saturated calcium sulfate solutions in the presence of carbonate ions Desalination, 159, 245-251, (2003).

ELDERFIELD, H. Treatise on Geochemistry – The Oceans and Marine Geochemistry, Vol.6, Elsevier Pergamon, Spain, 2004.

EL-MANHARAWY, S.; HAFEZ, A. Study of seawater alkalization as a promising RO pretreatment method Desalination, 153, 109-120, (2002).

FRANKS, F. **Water: a matrix of life**, 2nd edition, Royal Society of Chemistry Paperbacks, 2000.

FYLES, T.M; LYCON, D.S. Fouling reduction using centrifugal membrane separation Journal of Membrane Science, 176, 267-276, (2000).

GARBA, Y. et al Modeling of cadmium salts rejection through a nanofiltration membrane: relationships between solute concentration and transport parameters Journal of Membrane Science, 211, 51–58, (2003).

_____. Ion transport modeling through nanofiltration membranes Journal of Membrane Science, 160, 187-200, (1999).

GARCIA-ALEMAN, J. E DICKSON, J.M. Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions, Journal of Membrane Science, 235, 1-13, (2004).

GENTIL, V. **Corrosão**, Livros Técnicos e Científicos, 3ª edição, Rio de Janeiro, 1996.

GIANGUZZA, A.; PELIZZETTI, E.; SAMMARTANO, S. *Marine Chemistry: Na Environmental Analytical Chemistry Approach*, Kluwer Academic Publisher, Netherland, 1997.

GOOL, W.V. **Principles of Defect Chemistry of Crystalline Solids**, Academic Press, London, 1966

GOUELLEC, Y.A.L. E ELIMELECH, M. Calcium Sulphate (gypsum) scaling in nanofiltration of agricultural drainage water, Journal of Membrane Science, 205, 279-291, (2002).

GUEDES, C.L.B. et al. *Photochemical weathering study of Brazilian petroleum by EPR spectroscopy* Marine Chemistry, 84, 105-112, (2003).

GWON, E. et al. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater Water Research, 37, 2989-2997, (2003).

HARTMANN, R.L.; WILLIAMS, S.K.R. *Flow field-flow fractionation* as an analytical technique to rapidly quantitate membrane *fouling* Journal of Membrane Science, 209, 93-106, (2002).

HELALIZADEH, A.; MÜLLER-STEINHAGEN H.; JAMIALAHMADI, M. *Mixed salt crystallisation fouling* Chemical Engeeniring and Processing, 39, 29-43, (1999).

HER, N.; AMY, G.; JARUSUTTHIRAK, C. Seasonal variations of nanofiltration (NF) foulants: identification and control Desalination, 132, 143-160, (2000).

HILAL, N. et al. Using atomic force microscopy towards improvement in nanofiltration membranes properties for desalination pre-treatment: a review Desalination, 157, 137-144, (2003)

HILL, M.N. *The sea*- *Ideas and observations on progress in study of the seas*, V.2, Interscience Publisher, N.Y., 1963.

HORNE, R.A. Marine Chemistry- The structure of water and the chemistry of the hydrosphere, Jonh Wiley & Sons, Inc., N.Y., 1969.

HOWE, K.J.; ISHIDA, K.P.; CLARK, M.M. Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters Desalination, 147, 251-255, (2002).

HUITING, H.; KAPPELHOFJ.W.N.M.; BOSKLOPPER,T.G.J. **Operation of NF/RO plants:** from reactive to proactive, Desalination, 139, 183-189, (2001).

JARUSUTTHIRAK, C.; AMY, G.; CROUÉ, J.P. Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes Desalination, 145, 247-255, (2002).

JONES, E.J.W. *Marine Geophysics*, Jonh Wiley & Sons, LTD, Chichester, 1999.

KILDUF, J.E., MATTARAJ, S.; BELFORT, G. Flux decline during nanofiltration of naturally-occurring dissolved organic matter: effects of osmotic pressure, membrane permeability, and cake formation Journal of Membrane Science, 239, 39–53, (2004).

KILDUF, J.E et al. Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter, Desalination, 132, 133-142, (2000).

KING, E.J. *Ionic Reactions and Separations: Experiments in Qualitative Analysis*, Sanders College Publishing, 1973.

KNYAZKOVA, T.V.; MAYNAROVICH, A.A. Recognition of membrane fouling: testing of theoretical approaches with data on NF of salt solutions containing a low molecular weight surfactant as a foulant- Desalination, 126, 163-169, (1999).

KOGUTID, K.; KUNST, B. **RO** and **NF** membrane fouling and cleaning and pore size distribution variations Desalination, 150, 13-120, (2002).

KOSUTIC, K. et al. Removal of sulfates and other inorganics from potable water by nanofiltration membranes of

characterized porosity Separation and Purification Technology, 37, 177-185, **(2004)**.

KOYUNCU, I. et al. Factors influencing flux decline during nanofiltration of solutions containing dyes and salts Water Resarch, 38, 432-440, (2004).

KOYUNCU, I.; TOPACIK, D.; YUKSEL, E. Reuse of reactive dyehouse wastewater by nanofiltration: process water quality and economical implications Separation and Purification Technology, 36,77-85, (2004).

KOYUNCU, I.; TOPACIK, D. *Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye salts mixtures* Separation and Purification Technology, 33, 283–294, (2003).

KRIEG, H.M. et al. Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal Desalination, 171, 205-215, (2004).

LABBE, J.P. et al. *Fouling of inorganic membranes during whey ultrafiltration: analytical methodology* Journal of Membrane Science, 51, 293-307, (1990).

LABBEZ, C. et al. **Retention of mineral salts by a polyamide nanofiltration membrane** Separation and Purification Technology, 30, 47–55, (2003).

LEE, S.; LEE, C.H. Effect of operating conditions on CaSO₄ scale formation mechanism in nanofiltration for water softening Water Resarch, 34, 3854-3866, (2000).

LEYENDEKKERS, J.V. **Thermodynamics of Seawater** as a multicomponent eletrolyte solution- part I Marcel dekker Inc., New York, 1976

LIAN-SHIN, L.; CLIFF, J.T.; BLATCHLEY III, E.R Inorganic fouling at quartz: water interfaces in ultraviolet photoreactors – I. chemical characterization Pergamon, v.33, n15, 3321-3329, (1999)a.

_____. Inorganic fouling at quartz: water interfaces in ultraviolet photoreactors – II.Temporal and spatial distributions Pergamon, v.33,n15, 3330-3338, (1999)b.

_____. Inorganic fouling at quartz: water interfaces in ultraviolet photoreactors – III.NumericaL modeling Pergamon, v.33,n15, 3339-3347, (1999)c.

LIBES, S.M. **An Introduction to Marine Biogeochemistry**, John Wiley & Sons Inc., Canada, 1992.

LIPP, P.; GÖRGE, B.; GIMBEL, R. A comparative study of foulingindex and fouling-potential of waters to be treated by reverse osmosis Desalination, 79 – 203-216,(1990).

LUZ, Adão Benvindo da. **Tratamento de minerios**. Rio de Janeiro : CETEM/CNPq,. 534p. (1995)

MALLEVIALLE, J.; ODENDAAL, P.E.; WIESNER, M.R. **Water treatment membrane processes** American Water Works Association Research Foundation, Lyonnaise des Eaux e Water Research Comission of Africa, McGraw-Hill, New York (1996).

MÄNTTÄRI, M. et al. Effect of temperature and membrane pretreatment by pressure on the filtration properties of nanofiltration membranes Desalination, 145, 81-86, (2002).

MÄNTTÄRI, M. et al. Fouling effects of polysaccharides and humic acid in nanofiltration Journal of Membrane Science, 165, 1-17, (2000).

MARTIN, D.F. *Marine Chemistry*, V.1, Marcel Dekker, Inc., N.Y., 1972.

MATSUURA, T. Progress in membrane science and technology for seawater desalination a review Desalination, 134, 47-54 (2001).

McCASH, E.M. *Surface Chemistry*, Oxford University Press, New york, 2001.

McELHINEY, J.E. et al. **Determination of In-Situ Precipitation of Barium Sulphate during coreflooding** SPE 68309, apresentação no international Symposium on Oilfield Scale, United Kingdom, (2001).

MICHAEL, A.S. Membranes, membrane processes, and their applications: Needs, Unsolved problems and Challenges of the 1990's Desalination, 77, 5-34, (1990).

MILLER, J.N.; MILLER, J.C. Statistics and Chemometrics for Analytical Chemistry, 4th ed., Prentice Hall, London, 2000.

MOHAMMAD, A.W.; TAKRIFF, M.S. Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes-Desalination, 157, 105-111, (2003).

MULDER, M. **Basic Principles of Membrane Technology** Klumer Academic Publishers, 1991.

NÓBREGA, R.; HABERT, A.C.; BORGES, C.P. Introdução aos Processos de Separação por Membranas, PEQ-COPPE-UFRJ, Rio de Janeiro, (1999).

NÓBREGA, R *Membranas:* Uma Tecnologia Alternativa para o Tratamento de Efluentes, FEEMA, Rio de Janeiro. 1998.

NUNES, S.P. e PEINEMANN, V. *Membrane Technology in the Chemical Industry*, Wiley-VCH, Weinheim (2001)

NYSTRIJM, M. et al. Influence of process conditions and membrane/particle interaction in NF of wastewaters Desalination, 156, 379-387, (2003).

OHYA, H.; SUZUKI, T.; NAKAO, S. Integrated system for complete usage of components in seawater A proposal of inorganic chemical combinat on seawater Desalination, 134, 29-36, (2001).

PALACIO, L. et al. Fouling, structure and charges of composite inorganic microfiltration membrane Colloids and surfaces A: Physicochemical and Engineering Aspects, 138, 291-299, (1998).

PENG, W.; ESCOBAR, I.C.; WHITE, D.B. *Effects of water* chemistries and properties of membrane on the performance and fouling – a model development study Journal of Membrane Science, 238, 33-46, (2004).

PLOTTU, A. et al. Autopsies of membranes fouled on Mery-sur-Oise pilot units:many lessons for the behaviour of the water treatment plant Desalination 157, 367, (2003).

PONTALIER, P.; ISMAIL, A. e GHOUL, M. *Mechanisms for the selective rejection of solutes in nanofiltration membranes*, Separation and Purification Technology, 12, 175-181, (1997)

PONTIDA, M. et al. Seawater nanofiltration (NF): fiction or reality? Desalination, 158, 277-280, (2003).

POTTS, D.E.; AHLERT, R.C.; WANG, S.S.C **A** critical review of fouling of reverse osmosis membranes Desalination, 36 235-264, (1981).

PUSCH, W. Performance of RO membrane in correlation with membrane structure, transport mechanisms of matter and module design (fouling) State of the art, Desalination, 77, 35, (1990).

RANGARAJAN, R. et al. Predictability of membrane performance for mixed-solute reverse osmosis system. 4. System: cellulose acetate- nine seawater ions water, Ind. Eng. Chem. Process Des. Dev., 24, 977-985, (1985).

RAUTENBACH, R.; LINN, T. High-pressure reverse osmosis and nanofiltration, a "zero discharge" process combination for the treatment of waste water with severe fouling/scaling potencial Desalination, 105, 63-70, (1996).

RAUTENBACH, R.; LINN, T; EILERS, L. Treatment of severaly contaminated waste water by a combination of RO, highpressure RO and NF – potential and limits of the process Journal of Membrane Science, 174, 231-241 (2000).

REDDY, A.V.R. et al. Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer: *I. Permeation of water soluble polymers and inorganic salt* solutions and fouling resistance properties Journal of Membrane Science, 5526, 1-11,(2003).

ROCHA, A.A. **Prevenção de incrustações inorgânicas na exploração petrolífera offshore: aspectos analíticos e aplicações do inibidor PPCA** Tese de Doutorado, departamento de Química, pontificia Universidade católica do rio de janeiro (PUC-RJ), **(2002)**.

RODRIGUEZ, C. et al. Membrane fouling in cross-flow ultrafiltration of mineral oil assisted by pressurized CO_2 Desalination, 144, 173-178, (2002).

ROSÁRIO, F.F. do; BEZERRA, M.C.M.; Rocha, A.A. Scale Prediction and Remediation for Deep Water fields SPE International, SPE 68332, (2003) ROSÁRIO, F.F. do; BEZERRA, M.C.M. *Incrustações em campos de petróleo Programa Trainees* Petrobrás (2002).

_____. Scale Potential of Deep Water Field – Water Characterisation and Scaling Assessment SPE International, SPE 68332, (2001)

SAHACHAIYUNTA, P.; KOO, T.; SHEIKHOLESLAMI, R. *Effect of* several inorganic species on silica fouling in RO membranes Desalination, 144, 373-378, (2002).

SCHÄFER, A.I.; FANE, A.G.; WAITE, T.D. Nanofiltration: Principles and Applications, Elsevier, Oxford, (2005).

SCHNEIDER, R.P.; TSUTIYA, M.T. Membranas Filtrantes para o Tratamento de Água, Esgoto e Água de Reuso ABES (2001).

SHAALAM, H.F. Development of fouling control strategies pertinent to nanofiltration membranes Desalination, 153, 125-131, (2002).

SHEIKHOLESLAMI, R. Fouling mitigation in membrane processes Desalination, 123, 45-53, (1999).

SMITH, J.M.; VAN NESS, H.C.; ABBOTT, M.M. Introdução à Termodinâmica da Engenharia Química, 5^{a} ed., editora LTC, (2000).

SONG, L. Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling Journal of Membrane Science, 139, 183-200, (1998).

SONG,L.; ELIMELECH, M. *Theory of concentration polarization in crossflow filtration* Journal of Chemical Society, 91 (19), 3389-3398, (1995).

SONG, W. et al. Nanofiltration of natural organic matter with H_2O_2/UV pretreatment: fouling mitigation and membrane surface characterization Journal of Membrane Science, 241, 143–160, (2004).

STRAATSMA, J. et al. Can nanofiltration be fully predicted by a model ? Journal of Membrane Science ,198, 273-284, (2002).

STRATHMANN, H. Membrane Separation Processes: Current Relevance and Future Opportunities Aiche Journal, v.47, n^o5, (2001).

SUMMERHAYES, C.P.; THORPE, S.A. Oceanography- Illustrated Guide, John Wiley & sons, NY,(1998).

TAY, J.H.; LIU, J.; SUN, D.D. Quantification of membrane fouling using thermogravimetric method Journal of Membrane Science, 217, 17-28, (2003).

THANUTTAMAVONG, M. et al. Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nonofiltration of surface water for drinking treatment Desalination, 145, 257-264, (2002).

THORSEN, T. Concentration polarisation by natural organic matter (NOM) in NF and UF Journal of Membrane Science, 233,79–91, (2004).

TROMPER, M.K. Fouling of RO membranes in wastewater applications Desalination, 48, 299-319, (1983).

TSURU, T. et al. Negative rejection of anions in the loose reverse osmosis separation of mono- and divalent ion mixtures, Desalination, 81, 219-227, (1991).

VADGAMA, P. Membrane based sensors: a review Journal of Membrane Science, 50, 141-152, (1990).

VAN DER BRUGGEN, B.; VANDECASTEELE, C. Distillation vs. membrane filtration: overview of process evolutions in seawater desalination Desalination, 143, 207-218, (2002).

VAN DER BRUGGEN, A.; BRAEKEN, C. VANDECASTEELE, C. *Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds* Desalination, 147, 281-288, (2002)

VAN DER BRUGGEN, B; KONINCKX, A.; VANDECASTEELE, C. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofilltration. Water Research, 38, 1347–1353, (2004).

VAN DER LISDONK, C.A.C.; VAN PAASSEN, J.A.M.; SCHIPPERS, J.C. *Monitoring scaling in nanofiltration and reverse osmosis membrane systems* Desalination, 132, 101-108, (2000).

VEZZANI, D.; BANDINI, S. Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes Desalination, 149, 477-483, (2002).

VISSER, T.J.K. et al. *The removal of acid sulphate pollution by nanofiltratio* Desalination, 140, 79-86, **(2001)**.

VU, V.K.;HURTEVENT, C.; DAVIS, R.A. *Eliminating the need for scale inhibition treatments for elf Exploration Angola's Girassol Field* SPE 60220, apresentado no international Symposium on Oilfield Scale, United Kingdom, (2000).

XU, Y., LEBRUN, R.E. Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ionic strength and solute type Journal of Membrane Science, 158, 93-104, (1999).

YAROSHCHUK, A.E. The role of imperfections in the solute transfer in nanofiltration Journal of Membrane Science, 239, 9-15, (2004).

YAROSHCHUK, A.E. Rejection of single salts versus transmembrane volume flow in RO/NF:thermodynamic properties, model constant coefficients, and its modification Journal of Membrane Science, 198, 285-297, (2002).

_____. Recent progress in transport characterization of nanofiltration membranes Desalination, 149, 423-428, (2002).

YAXTHIASSON, E.; SIVIK, B. Concentration polarization and fouling Desalination, 35, 59-103, (1980).

YEBRA, D.M.; KIIL, S.; DAM-JOHANSEN, K. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings Progress in Organic Coatings, 50, 75–104, (2004).

YUAN, M.; TODD, A.C.; SORBIE, K.S. Sulphate scale precipitation arising from seawater injection: a prediction study Marine and Petroleum Geology, 11, (1994).

ZIDOURI, H. Desalination in Morocco and presentation of design and operation of the Laayoune seawater reverse osmosis plant - Desalination, 131, 137-145, (2000).

ANEXO I

ANEXO I

N ⁰ visor	Tempo 1L (min)	Q (L/h)	V _{fc} * (m/s)	Re	regime
3	22	2,7	0,010	3,96*10	LAMINAR
4	8	7,5	0,030	1,08*102	LAMINAR
5	5,2	11,4	0,046	1,65*102	LAMINAR
6	3,5	17,1	0,068	2,44*102	LAMINAR
7	2,7	22,5	0,090	3,24*102	LAMINAR
8	2	30,0	0,120	4,31*102	LAMINAR
9	1,7	36,0	0,140	5,03*102	LAMINAR
10	1,5	40,0	0,160	5,75*102	LAMINAR

Calibração da bomba de diafragma OMEL NSP-II

* velocidade de fluxo cruzado

Dimensões do módulo 1 (retangular pequeno)

Dimensões do canal de alimentação Largura = c = 42,0 mm = 0,04200 m Espessura = b = 3 mm = 0,003m Altura = h = 1,65 mm = 0,00165 m Área de seção perpendicular ao fluxo cruzado = Acf = c.h =7,0 *10⁻⁵ Área efetiva de membrana = 6,3 * 12,3 cm Calibração do condutivímetro QUIMIS modelo Q-450

Solução: NaCl

Temperatura ambiente: 28,2 °C

NaC1 (g/L)	Condutividade (µS/cm)
1	2152
2	3727
3	4934
4	7141
5	8230
6	9405
7	10957
8	12685
9	13986
10	15135

Curva de calibração condutívimetro Digimed NaCl

Calibração do condutivímetro QUIMIS modelo Q-450

Solução: MgSO4

Temperatura ambiente: 26,8 °C

NaCl (g/L)	Condutividade (uS/cm)
0,1	138
0,2	173
0,3	261
0,4	312
0,5	347
0,6	415
0,7	464
0,8	545
0,9	598
1	634
2	1120
3	1618
4	2119
5	2486
6	2870
7	3280
8	3574

ANEXO II

ANEXO II

Tabela 1 - Codificação dos experimentos desenvolvidos no decorrer da etapa experimental do trabalho de Tese

Membrana			M • • • • •	
No	utilizada	Solução de alimentação	Tempo	
01	TFC-SR	CaSO ₄ (4000 mg/L)	2 dias	
02	NF-90-400	CaSO ₄ (4000 mg/L)	2 dias	
03	NF-90-400	Água do mar ASTM sem MP*	2 dias	
04	NF-90-400	NaCl (30, 300, 3000 mg/L)	4 dias	
05	NF-90-400	Água do mar ASTM sem MP	7 dias	
06	TFC-SR	CaSO ₄ (4000 mg/L)	4 dias	
07	NF-90-400	MgSO ₄ (1,65 g/L)	10 dias	
08	NF-90-400	MgSO ₄ (1,65 g/L)	10 dias	
09	NF-90-400	MgSO4 (3000 mg/L)	10 dias	
10	NF-90-400	MgSO4 (4000 mg/L)	10 dias	
11	NF-90-400	CaSO ₄ (4000 mg/L)	3 dias	
12	NF-90-400	Água do mar ASTM sem MP	10 dias	
13	NF-90-400	Na ₂ SO ₄ (4000 mg/L)	10 dias	
1	NF-90-400	K ₂ SO ₄ (4000 mg/L)	10 dias	
15	NF-90-400	MgSO ₄ (3000 mg/L) + NaCl (3000 mg/L)	10 dias	
16	NF-90-400	K ₂ SO ₄ (4000 mg/L) +NaCl (4000 mg/L)	10 dias	
17	NF-90-400	Na ₂ SO ₄ (4000 mg/L) +NaCl (24,53 g/L)	10 dias	
18	NF-90-400	K ₂ SO ₄ (4000 mg/L) +NaCl (24,53 g/L)	10 dias	
19	NF-90-400	MgSO ₄ (4000 mg/L) +NaCl (24,53 g/L)	10 dias	
20	NF-90-400	CaSO ₄ (1,26 g/L) +NaCl (24,53 g/L)	10 dias	
21	NF-90-400	Água do mar **	10 dias	
22	NF-90-400	Água do mar**	10 dias	

Para analisar os dados obtidos nos experimentos e entender os resultados é necessário conhecer alguns parâmetros que influenciam de forma direta os fenômenos envolvidos no processo de separação por membranas, mais especificamente a nanofiltração.

≻Com relação a rejeição:

È importante conhecer as concentrações das correntes de alimentação e permeado para saber o potencial de rejeição da membrana. Para quantificar os íons presentes nas duas correntes citadas utilizamos a técnica de cromatografia iônica, com ela foi possível saber a quantidade de íons cloreto e sulfato antes e após a nanofiltração.

Nas soluções simples o acompanhamento foi feito com auxílio de condutivímetro, porém nas soluções multicomponentes a quantificação foi feita apenas por cromatografia.

Com o resultado de concentração das correntes a rejeição da membrana foi calculada pela fórmula:

$$R\% = \frac{(Co - Cp)}{Co} * 100$$

onde:

Co = concentração alimentação *Cp* = concentração permeado

≻Com relação ao fluxo:

Os custos de operações nos processos que utilizam membranas estão diretamente relacionados com o fluxo permeado. Quando se é possível mover mais água através da membrana por unidade de área por tempo menos área de membrana é requerida para atingir o fluxo projetado. Isso resulta em menor custo com módulos de membranas, periféricos, equipamentos de monitoração.

O acompanhamento da queda de fluxo permeado foi feito utilizando-se rotâmetro, a cada período, pré estabelecido, o fluxo permeado era desviado do tanque para o instrumento e a medição era feita, ao final a corrente era encaminhada para o local de origem. Foi feita uma tentativa de acompanhamento do fluxo através da variação de massa ao longo do experimento, em decorrência de limitações operacionais a idéia foi descartada.

Com os valores de $\Delta t/mL$ calcula-se o fluxo por tempo e por área de membrana:

$$Jp = \frac{Vp}{t*A}$$

onde : Vp = volume de permeado t = tempo A = 77,49 cm²

O fluxo de água limpa através da membrana sem material depositado em sua superfície ou poros, é descrito pela lei de Darcy:

Diferença de pressão transmembrana

 $J = \frac{\Delta P}{\mu R_m}$ Resistência hidráulica Viscosidade absoluta da água

Essa equação é similar (em termos de forma) a equação de Kedem-Katchalsky, se o fluxo permeado (água) é muito maior que o fluxo de soluto (como em uma solução diluída), então:

 $J\alpha L_v(\Delta p - \sigma \Delta \pi)$

Com relação a transferência de massa

O valor do coeficiente de transferência de massa (k) é de fundamental importância e pode ser calculado através de correlações empíricas. Nessas correlações, o coeficiente de transferência de massa, expresso pelo número de Sherwood (Sh), é uma função dos números adimensionais de Reynolds (Re) e Schmidt (Sc). O número de Sh pode ser interpretado como o gradiente de concentração admensional na superfície da membrana. O número de Re, por sua vez, relaciona as forças de inércia e viscosas e o número de Sc relaciona a difusividade de momento e de massa (Incropera, 2002).

$$Sh = \frac{k * d_{h}}{D} = a * \operatorname{Re}^{b} * Sc^{c}$$
$$\operatorname{Re} = \frac{d_{h} * v}{v} = \frac{\rho * v * d_{h}}{\eta}$$
$$Sc = \frac{v}{D}$$

Para regime laminar:

$$1,85*\left(\frac{\operatorname{Re}^*Sc^*d_h}{L}\right)^{0,33}$$

Outra correlação empírica importante utilizada no estudo foi o número de Peclet, esse número caracteriza o balanço entre convecção e difusão na camada limite, ou seja, conhecendo-se o número de Peclet é possível estimar o comportamento da polarização de concentração.

$$Pe = \frac{J_v \delta}{D}$$

As conclusões deste trabalho foram tiradas com base em valores calculados através dos modelos supra citados e ainda, quando necessário, modelos descritos no capítulo Modelos matemáticos.

ANEXO III

ANEXO III

O Cromatógrafo de íons fornece um relatório como o que se encontra nesta seção porém por motivo de tamanho os resultados foram organizados em tabelas.

Experimento 01

Solução:CaSO₄ 4000 mg/L (CaCl₂+Na₂SO₄)

Membrana: TFC-SR

amostra	Cl- (mg/L)	SO4 (mg/L)
Ao	1585,0294	1614,7685
A5	1556,6005	1615,5367
A ₂₄	1445,1863	1502,3183
Po	1273,8428	17,0872
P_2	1517,2990	50,7100
P ₄	1177,4438	35,7737
P ₁₉	1316,8235	40,3262
P ₂₄	1296,2091	58,1424

Experimento 02

Solução: $CaSO_4$ 4000 mg/L ($CaCl_2 + Na_2SO_4$) Membrana: NF-90-400

amostra	Cl- (mg/L)	$SO_4 (mg/L)$
A ₀	1710,1741	1703,2073
P ₀	812,8047	
P ₂₁	771,1651	60,5286

Experimento 03

Solução: água do mar

amostra	Cl (mg/L)	$SO_4 (mg/L)$
P ₀	14990,3401	
P4	15454,8397	
P _{12,}	17487,0557	
P ₂₃	13595,9412	

<mark>Experimento 04</mark>

Solução:NaCl 3000 mg/L

Membrana: NF-90-400

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A ₀	1412,3896	
P ₁	1570,5544	
P ₂	1571,1215	
P ₃	1520,3005	
P ₄	1722,7115	
P5	1667,2187	
P ₆	1271,1380	
P ₇	1253,9853	

Experimento 05

Solução: água do mar

Membrana: NF-90-400

amostra	Cl (mg/L)	SO4 (mg/L)
A ₀	21608,1029	2415,8227
A _f	21525,3915	3135,0385
P ₁	11347,9739	
P_2	24487,1668	
P ₄	16331,3454	
P ₅	17180,5853	

Experimento 11

Solução: $CaSO_4$ 4000 mg/L ($CaCl_2$ +Na₂SO₄)

amostra	Cl (mg/L)	$SO_4 (mg/L)$
A ₀	1824,1799	1777,5386
A _f	1564,7300	1539,0488
P1	873,4385	
P ₂	853,0336	
P ₃	1559,0118	

Experimento 12

Solução: água do mar

Membrana: NF-90-400

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A ₁	20427,1595	2236,1642
A ₂	19482,2807	2774,7330
A ₃	19832,8820	2832,9505
A ₅	19871,9841	2875,1280
A ₆	19681,6435	2866,7718
A ₇	27597,4562	3111,9182
P1	7254,7846	
P2	11950,3868	
P ₃	13062,5358	
P4	13598,0878	
P ₅	14199,7631	
P ₆	11743,8286	
P ₇	11924,5629	
P ₈	12565,5391	
P9	13386,0682	
P ₁₀	11474,0694	
P ₁₁	13030,9231	
P ₁₂	11875,6620	
P ₁₃	13323,4798	
P ₁₄	11950,7670	

Experimento 13

Solução: Na_2SO_4 4000 mg/L

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A ₂		2631,9269
A ₃		2617,2789
A4		2559,3748
P_2		6,7457
P ₃		6,5335
P4		6,4571

P ₅	6,7549
P ₆	5,5900
P ₇	5,5816
P8	5,2185
P ₁₀	4,8899
P ₁₁	5,4440
P ₁₂	5,2031

<mark>Experimento 14</mark>

Solução: K_2SO_4 4000 mg/L

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A1		2194,9828
A ₂		2058,1127
A ₃		2042,0873
A4		2078,3381
A5		2145,1834
A ₇		2173,1979
P1		34,6882
P_2		24,1752
P ₃		26,8094
P ₄		13,2616
P_5		17,4900
P ₆		16,0709
P ₇		8,8473
P ₈		10,3668
P ₉		9,1258
P ₁₀		8,1605
P ₁₁		8,1685
P ₁₂		8,7208
P ₁₃		8,1443
P ₁₄		8,1063
P ₁₅		8,5049

Experimento 15

Solução: NaCl (3000 mg/L) + MgSO₄ (3000 mg/L)

Membrana: NF-90-400

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A1	1613,9494	1154,7895
A ₂	1602,1106	1163,3529
A ₃	1540,0976	1122,2140
A4	1570,6629	1131,7798
A ₅	1585,1298	1155,4092
P ₁	894,5362	
P ₂	1137,3306	
P ₃	1199,4586	
P4	1182,1014	
P ₅	1135,4271	
P ₆	1247,0608	
P ₇	1122,2385	
P ₈	1111,6782	
P9	1121,8286	
P ₁₀	1212,0584	
P ₁₁	1078,0393	
P ₁₂	1081,4534	
P ₁₃	1085,0897	

Experimento 16

Solução: NaCl(4000 mg/L) + K₂SO₄ (4000 mg/L) **Membrana:** NF-90-400

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A ₁	2097,2674	2077,6081
A ₂	2033,3246	2058,3434
A ₃	2095,3243	2137,3144
A4	2093,7000	2120,5149
A ₅	2196,1997	2232,8556
A ₆	2072,3033	2137,1546
P ₁	1041,4110	
P_2	1577,0171	

P ₃	1628,8474	
P ₄	1550,5194	
P5	1724,7470	
P ₆	1561,0582	
P ₇	1522,0283	
P ₈	1521,4467	
P9	1526,9935	
P ₁₀	1480,4528	
P ₁₁	1519,4856	
P ₁₂	1486,7147	
P ₁₃	1461,9997	
P ₁₄	1446,1521	

Experimento 17

Solução: NaCl (24,53 g/L) + Na₂SO₄ (4,09 g/L)

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A1	15501,0539	2708,0846
A ₂	15199,0699	2584,1996
A ₃	14452,0107	2625,3731
A_4	14521,1369	2623,3379
A_5	13199,3307	1872,2981
P ₁	13611,9670	
P ₂	12558,5029	
P ₃	12810,2085	
P ₄	13049,6352	
P ₅	13225,4728	
P ₆	13282,8716	
P ₇	13590,2208	
P ₈	13081,2756	
P9	13454,7210	
P ₁₀	13398,3237	

<mark>Experimento 18</mark>

Solução: NaCl(24,53 g/L) + K₂SO₄ (4g/L)

Membrana: NF-90-400

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A1	12757,1897	1810,2412
A ₂	13214,8193	1862,2442
A ₃	14198,3203	1844,2242
A4	14079,2364	1804,0423
A ₆	12278,62	1631,4738
A7	12291,1913	1623,0489
A ₈	12419,5129	1637,4438
A9	12274,7811	1623,2658
P ₁	12129,0087	
P2	11739,4175	
P ₃	10832,5148	
P4	11977,5027	
P5	11762,9627	
P ₆	11928,36	
P ₇	12217,1036	
P ₈	10208,7765	
P ₉	10559,7079	
P ₁₀	10995,2679	

Experimento 19

Solução: NaCl(24,53 g/L) + MgSO₄ (4000 mg/L) **Membrana:** NF-90-400

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A ₁	13119,9052	1068,2839
A_2	11202,5886	892,2541
A ₃	10402,9425	944,3869
A4	9811,9126	790,6951
A ₅	9423,7680	760,6918
A ₆	10726,6790	972,5991
P1	9492,4438	
P_2	10073,2646	

P ₃	9805,8287	
P4	9331,2103	
P5	10560,8562	
P ₆	10454,9698	
P ₇	10599,3895	
P ₈	8566,0308	
P9	10141,2354	
P ₁₀	9388,8538	

<mark>Experimento 20</mark>

Solução: NaCl(24,53 g/L) + MgSO₄ (4000 mg/L)

Membrana: NF-90-400

amostra	Cl ⁻ (mg/L)	SO ₄ (mg/L)
A ₁	10425,6019	256,6226
A ₂	10006,1227	261,8356
A ₃	8809,2806	237,7923
A4	9340,1153	247,0098
A5	8206,3849	226,3781
A ₆	9113,7003	250,0197
P1	5373,3239	
P ₂	6669,9259	
P ₃	7309,3846	
P4	6754,8316	
P5	8829,1157	
P ₆	6575,1989	
P ₇	7012,8130	
P ₈	6418,6816	
P ₉	6801,3790	
P ₁₀	7849,8914	

Experimento 21

Solução: água do mar

amostra	Cl (mg/L)	SO4 (mg/L)
A1	13952,6877	1475,5996

A ₂	17096,4901	1930,3183
A ₃	17723,2852	1987,8795
A4	17315,8772	1929,4888
A5	17155,3215	1899,5797
A ₆	16868,1663	1867,7437
P ₁	7723,5850	
P ₂	12416,1656	
P ₃	12724,7368	
P ₄	12065,9891	
P ₅	12840,5543	
P ₆	12391,9921	
P ₇	13345,2205	
P ₈	9979,3239	

Experimento 22

Solução: água do mar

amostra	Cl ⁻ (mg/L)	SO4 (mg/L)
A ₁	15239,6771	1677,3542
A ₂	14715,9880	1621,9338
A ₃	14509,1136	1598,7042
A ₄	14110,7846	1535,0203
A5	13790,0847	1488,1785
A ₆	11684,5594	1275,1670
P1	10351,1579	
P ₂	9038,6926	
P ₃	10031,1620	
P4	9398,4465	
P ₅	9644,0618	
P ₆	10084,2093	

ANEXO IV

ANEXO IV

ANEXO V

Parâmetros de análise do processo de Nanofiltração

parâmetro	fórmula	unidades
rejeição	R=1-Cp/Cf	
recuperação ou conversão	C=Qp/Qf	
velocidade de fluxo cruzado	Vcf=Qf/A	m/s
vazão	Q	m³/s ou L/h ou gpd
fluxo permeado	J=Q/Am	kg/m2.s ou L/m2.h ou gfd
permeabilidade	Lp	
fator de concentração	cf=Cc/Cf	
área perpendicular ao fluxo	Ap=c.h	m2
fluxo solvente permeado	Js=Lp.(dP-dpi)	
fluxo soluto permeado	Ji=B.dCi	
rejeição aparente ou observada	Robs = (Cf-Cp)/Cf	
rejeição verdadeira	Rt = (Cm-Cp)/Cm	
concentração na membrana	Cm =	
coeficiente de	exp(Js/k)=(Cm-	
transferência de massa(k)	Cp)/(Cf-Cp)	
número de Sherwood	Sh = k.dh/D	D=coeficiente de difusão
número de Schmit	Sc = u/p.D	
número de Reynolds	Re = p.v.dh/u	
densidade	ρ	kg/m ³
viscosidade	μ	Pa.s
diâmetro hidráulico	dh = 2.Ap/(c+h) =~2.h	Pa.s
supersaturação	ss = Cm/s = CP.Cf/s	
módulo de polarização de	CP = (Cm-Cp)/(Cf-	
concentração	Cp)=exp(Js/k)	

Abreviaturas:

Cp = concentração do soluto permeado

Cf = concentração do soluto alimentação

Cc = concentração do soluto concentrado

Cm = concentração do soluto na membrana

Qf = vazão de alimentação

Qp = vazão de permeado

Ap = área perpendicular ao fluxo

c = largula do canal de alimentação

h = altura do canal de alimentação

Am = área de membrana

dpi = dpressão osmótica

Js = fluxo do solvente

Ji = fluxo de soluto

s = solubilidade

bibliografia:

Keith Scott; Handbook of Industrial Membranes; 1995; Elsevier Science Publishers.

W.J. Koros, Y.H. Ma, T. Shimidzu; Terminology for Membranes and Membrane Processes-IUPAC; Journal of Membrane Science 120 (1996) 149-159.

Membrane technology Desalination Journal of membrane science

Composto	Água Marinha	Kps	solubilidade
	(mg/L)	(mol/L) 20°C	(mg/L)
NaCl	27210		360000
MgCl ₂	3800		542500
MgSO ₄	1650		445000
CaSO ₄ (.2H ₂ O)	1260	6,1*10-5	2090
K_2SO_4	860		120000
BaSO ₄	~		2,4
Na_2SO_4	~		194000
SrSO ₄	~	2,81*10-7	140
$CaCl_2$	~		745000
$SrCl_2$	~		529000
Tento	Água Marinha	mog /I	1mag/I(mg/I)
Ionce	(mg/L)	meq/L	I meq/L (mg/L)
Cl	19353	545,924	35,45
Na	10800	469,565	23
SO ₄	2724	56,750	48
Mg	1600	131,148	12,2
Ca	416	20,800	20
К	390	10,000	39
HCO3	153	2,508	61
Br	68	0,850	80
Sr	15	0,342	43,8
Si (4)	4,9	0,700	7
CO ₃	2,3	0,077	30
F	1,7	0,089	19
Ba	0,05	0,001	68,7
TDS	35527,95		
рН	8,2		

Análise Teórica da solubilidade de sais inorgânicos Incrustantes

Siedell; Solubilities of Inorganic and Metal Organic Compounds

Preparação da água do mar sintética

Em função da diversidade de métodos encontrados na literatura para preparação da água do mar sintética e visando a minimização de erros e a reprodutibilidade dos experimentos a solução foi preparada segundo a norma ASTM D1141.

De acordo com a norma: para preparar 10 L de solução sintética de água do mar é necessário dissolver 245,34 g de cloreto de sódio e 40,94 g de sulfato de sódio anidro em aproximadamente 8 L de água (com condutividade baixa de acordo com a norma D1193). Adicionar 200 mL de solução estoque nºe devagar e com agitação vigorosa. Em seguida adicionar 100 mL de solução estoque nº 2, completar o volume até 10 L. Ajustar o pH para 8,2 com NaOH 0,1N se necessário.

Solução estoque n^0 1: Dissolver a quantidade indicada dos sais em 7 L de água e estocar em recipiente fechado.

MgCl ₂ .6H ₂ O	3889,0 g (=555,6g/L)
CaCl ₂ (anidro)	405,6 g (=57,9 g/L)
SrCl ₂ 6H ₂ O	14,8 g (= 2,1g/L)

Solução estoque n^0 2: Dissolver a quantidade indicada dos sais em 7 L de água e estocar em recipiente fechado.

KCl	486,2 g (=69,5 g/L)
NaHCO ₃	140,7 g (=20,1 g/L)
KBr	70,4 g (=10,0 g/L)
H ₃ BO ₃	19,0 g (=2,7 g/L)
NaF	2,1 g (=0,3 g/L)